Na przykładzie regulacji poziomu cieczy w zbiorniku przez sterowanie odpływem y przy różnych wartościach dopływu cieczy x - zakłócenie.
Wyznaczenie efektów działania regulatora PID polega na obliczeniu całki z różnicy, nazywanej uchybem u, między wartością mierzoną r a wartością zadaną w (u = r - w) oraz jednocześnie na obliczeniu różniczki ze zmiany wartości uchybu (Δu=u2 - u1) , a następnie dodaniu wyników obu tych działań do wartości błędu pomnożonego przez współczynnik proporcjonalności Kp. Regulator generuje sygnał e wymuszający zmianę przepływu y i powrót regulowanej wielkości (np. poziomu cieczy w zbiorniku) do jej wartości zadanej. Sygnał ten jest wysyłany przez regulator do urządzeń wykonawczych sterujących zaworem odpływu.
Na rysunku 1 przedstawiono przykład wizualizacji takiego układu regulacji wprowadzając także elementy wynikające z nowego podejścia do prezentacji wartości obserwowanych wielkości (ang. Situational Awareness).
Jeśli zakłócenie jest stałe to można skompensować jego wpływ przez odpowiedni dobór wielkości sterującej.
Jeśli jednak w układzie występują zakłócenia o zmiennych amplitudzie i czasie, to lepiej jest mierzyć wielkość wyjściową i przy jej odchyleniach od wartości zadanej wygenerować sygnał sterujący przeciwdziałający tym zakłóceniom.
Takie działanie nazywa się regulacją, a do jej realizacji potrzebny jest regulator.
Istnieje wiele regulatorów różniących się sposobem działania, strukturą , właściwościami w stanach przejściowych i ustalonych oraz rodzajem przetwarzanych sygnałów.
Klasyczny regulator typu PID powinien mieć możliwość działania:
Dostosowanie regulatora do układu regulacji polega na takim nastawieniu jego parametrów, aby przebiegi wartości regulowanej spełniały wymogi przyjętego wskaźnika jakości regulacji. Jakość procesów regulacji jest oceniana za pomocą wskaźników zwanych kryteriami.
(1) |
W drugim przypadku widać wzajemne powiązanie pomiędzy działaniami poszczególnych członów regulatora.
(2) |
Wskaźniki jakości regulacji można podzielić na dwie grupy:
Najczęściej wykorzystywane są kryteria:
Gdy znany jest model matematyczny obiektu, lub znana jest jego charakterystyka dynamiczna, można zastosować różne metody analityczne doboru parametrów regulatora.
Przy braku informacji na temat modelu obiektu zwykle stosuje się eksperyment Zieglera-Nicholsa.
Parametry regulatora Kp , Ti , Td można nastawiać tylko w określonych zakresach wartości.
Czas zdwojenia decyduje o szybkości działania całkującego.
Czas wyprzedzenia decyduje o intensywności tej odpowiedzi.
Wzmocnienie krytyczne, to wzmocnienie regulatora proporcjonalnego, który połączony szeregowo z obiektem powoduje pojawienie się niegasnących drgań okresowych. Układ zamknięty znajduje się wtedy na granicy stabilności.
Wzmocnienie to może być znalezione eksperymentalnie. Metoda ta jest wykorzystywana przy samostrojeniu regulatorów. Wzmocnienie proporcjonalne jest zwiększane tak długo, aż zauważy się występowanie oscylacji o stałej małej amplitudzie. Pozwala to określić okres oscylacji To. Samostrojenie układu stanowi problem w aplikacjach, gdzie oscylacje cyklu granicznego mogłyby zakłócić funkcjonowanie sterowanego procesu.
Inne parametry są ustalane na podstawie danych z tablicy.
Metoda drgań granicznych (wzmocnienia krytycznego)
Typ | Kp | Ti | Td |
P | 0,50 Kkr | - | - |
PI | 0,45 Kkr | To/1,2 | - |
PD | 0,80 Kkr | - | To/8 |
PID | 0,60 Kkr | To/2 | To/8 |
Przyjęcie nastaw wg tablicy, pozwala uzyskać przeregulowanie rzędu 15-20% przy liczbie oscylacji nie przekraczającej zwykle dwóch.
Parametry Kkr i To można wyznaczyć także analitycznie korzystając z warunków granicznych wynikających z kryterium Nyquista.
Badania regulatorów można zrealizować w oparciu o program RePID, w którym zaimplementowano regulator cyfrowy wg wzoru 3:
(3) |
Poszczególne parametry są określane na podstawie zależności:
(3a) |
oraz
(3b) |
Okno programu przedstawia rysunek.
Zakresy wartości parametrów układu i nastaw regulatora:
Regulatory wyposażone wyłącznie w funkcje proporcjonalną powodują wyraźną różnicę wskazań wartości mierzonej i zadanej. Szczególnie wyraźne występuje to w obiektach o dużej bezwładności, tj. przy znacznym opóźnieniu. Regulacja w takich przypadkach prowadzi do oscylacji wokół wartości zadanej i trwałego występowania uchybu o cyklicznie zmieniających się wartościach.
Wynika to stąd, że intensywność działania elementu P jest proporcjonalna do wielkości uchybu. Główną wadą jest więc to, że im mierzony parametr regulowanego procesu jest bliższy wartości zadanej, to wartość sygnału korygującego jest mniejsza. Powoduje to ciągłe asymptotyczne zbliżanie się do wartości zadanej, lecz nigdy nie dochodzi do jej osiągnięcia, zawsze pozostawiając odchyłkę po tej samej stronie od wartości zadanej.
Funkcję całkującą regulatora początkowo nazywano "zerowaniem". Wynika to z tego, że funkcja ta pozwalała na doprowadzenie do zerowej wartości uchybu regulacji. Przy zastosowaniu tylko funkcji proporcjonalnej było to niemożliwe. Niekiedy jako parametru całkowania używa się określenia „czas uspokojenia”. Najpowszechniejszy jest jednak termin „czas zdwojenia”, w którym sygnał wyjściowy osiągnie wartość dwukrotnie większą od wartości wynikającej z wzmocnienia. Przy tej funkcji nastawienie dłuższego czasu oznacza spowolnienie akcji całkującej (Kp/Ti).
Innym podejściem do procesu całkowania jest użycie parametru „tempo zerowania” lub „częstotliwość całkowania”. Obydwa te parametry są odwrotnością czasu zdwojenia. Wynika stąd, że im tempo zerowania jest większe, to czas zdwojenia jest krótszy i szybciej przebiega całkowanie.
Sygnał sterujący regulatora I zmienia się dopóty, dokóki istnieje uchyb regulacji, który jest sprowadzany do zera. Jednak regulator taki działa ciągle, ponieważ w układzie istnieje zawsze niewielki uchyb spowodowany zmianami strumienia cieczy. Oznacza to, że taki układ regulacji jest niestabilny.
Uchyb regulacji podczas przebiegu całkowania regulatora pozwala na zmianę znaku na przeciwny. Ta właściwość eliminuje niedostatek członu P i pozwala na sprowadzenie uchybu do wartości zerowej. W bardzo wielu przypadkach regulowany proces przebiega doskonale właśnie przy zastosowaniu regulacji z algorytmem PI.
Początkowo proces różniczkowania zastosowany w regulatorach nazwano „wyprzedzeniem”, bo jego działanie wyprzedzało działanie elementu proporcjonalnego przyspieszając usuwanie uchybu.
Element różniczkujący może usprawnić przebieg regulacji, ale tylko w pewnych sytuacjach oraz gdy jest odpowiednio nastawiony. Rozpoznanie sytuacji, których to dotyczy, jest uzależnione od zrozumienia, jak działa regulacja według algorytmu PID.
W przypadku, gdy trzeba ściśle utrzymać temperaturę w zbiorniku z ciekłym produktem nie wystarczy stosowanie regulacji typu PI. Przekroczenie wartości zadanej w dół przez temperaturę produktu może grozić jego zniszczeniem, a w górę np. zapłonem. Aby szybko zlikwidować odchyłkę regulacji, nie doprowadzając do znacznego przekroczenia temperatury produktu poza wartość zadaną wprowadza się właśnie element różniczkujący D.
Działanie różniczkujące regulatora jest swego rodzaju hamulcem w procesie regulacji. Im bardziej regulator próbuje zmienić wartość rzeczywistą regulowanego parametru, tym bardziej zdecydowane jest oddziaływanie hamujące elementu różniczkującego.
Jest to działanie porównywalnie szybkie jak przy algorytmie PI, jednak likwiduje oscylacje, a przy trafnie dobranym czasie wyprzedzenia Td, szybciej stabilizuje przebieg procesu po zakłóceniu, niż to ma miejsce w przypadku PI.
Działanie różniczkujące ma zwykle większe znaczenie w procesach szybkozmiennych i jest szczególnie wrażliwe na zakłócenia szumem pomiarowym.